Sophietje

Zie mijn vorige bijdrage  over het noodweer in Spanje. Luister eens hoe de minister van klimaatzaken reageert op een vraag van het kamerlid Van Houwelingen.

Wat moet je hier nou nog op zeggen? Ik denk aan een oud spreekwoord: “Tegen domheid strijden zelfs goden tevergeefs”. Zou Sophie Hermans bij mij in de klas zitten, dan zou ze voor straf het AR6 rapport van het IPCC moeten bestuderen. Niet helemaal natuurlijk, maar wel het deel ‘The Physical Science Basis’. Dat zou haar leren, letterlijk!

Zie ook hier

Overstromingen in Spanje

De overstromingen met als gevolg veel doden en schade waren het gevolg van een weerverschijnsel dat in Spanje DANA heet. DANA staat voor Depresión Aislada en Niveles Altos (geïsoleerde depressie op hoger niveau). In het Nederlands heet een dergelijke situatie een koudeput.


Fig.1   Bron: Martin Leon (2003)

Figuur 1 toont het ontstaan van een koudeput. De pijlen geven de straalstroom weer, bij B is er een begin van een afsnoering van koude lucht.  Op tekening D is de koudeput volledig afgesnoerd van de normale circulatie. De zeer koude lucht bevindt zich op ongeveer 5 km hoogte  en beweegt onafhankelijk van de normale W-O stroming. Een dergelijke koudeput is daardoor soms stationair of beweegt zelfs in tegenovergestelde (O-W) richting. Kenmerkend van een dergelijke koudeput is dat er aan de grond van die lage druk vaak weinig merkbaar, de lage druk bevindt zich ongeveer op 5 km hoogte.

DANA laat zich 1x per jaar of twee jaar aan de oostkust van Spanje zien. Relatief warme vochtige lucht wordt met wind vanaf zee het land opgeblazen, terwijl relatief koude lucht in de koudeput zich op enkele kilometers hoogte bevindt. Daardoor ontstaat er een onstabiele temperatuuropbouw, met als gevolg een zeer sterke luchtstroming omhoog. De waterdamp condenseert in de koude bovenlucht en er valt veel neerslag.

Een koudeput werkt dan als een enorme pomp. Als de trog niet beweegt (stationair is) kunnen er op dergelijke wijze enorme hoeveelheden water naar beneden komen. Het is dan als het ware een op zichzelf staand systeem waarin de temperatuurverschillen tussen de lage delen en de koudeput in de bovenlucht de energie levert voor sterke convectie en wolkvorming. Dat was ook het geval op 13 en 14 juli 2021 boven het grensgebied van Zuid-Limburg, België en Duitsland. Zie het artikel over die situatie hier.


Fig.2   Bron: AEMET

Figuur 2 toont de gebieden Lees verder

Zonuren in De Bilt vanaf 1901

Vanaf 1901 wordt op het station De Bilt het aantal zonuren per etmaal bijgehouden. Die data zijn hier te vinden. Een zonuur is een uur waarin de zon onafgebroken zichtbaar is.


Fig.1   Bron: KNMI

De data van 1901 tot 1992 zijn afkomstig van de Campbell-Stokes zonneschijnmeter. De glazen bol werkt als een brandglas dat een brandspoor op het onderliggende papier brandt. Zodra er wolken voor de zon kwamen werd dat spoor onderbroken. Uit de totale lengte van het brandspoor kon de duur van het directe zonlicht worden bepaald.


Fig.2   Bron: KNMI

Vanaf 1992 wordt de duur van de directe zonneschijn elektronisch gemeten met een pyranometer. Van 1992 tot 2006 zijn beide instrumenten tegelijk gebruikt. Met behulp van die zogenaamde parallelmetingen werden de afwijkingen tussen beide instrumenten bepaald. Daaruit bleek dat de pyranometer ’s winters iets meer en ’s zomers iets minder zonuren oplevert. Lees verder

Windmolens en weersbeïnvloeding

Windmolens zouden het weer beïnvloeden wordt beweerd. En het zou me eigenlijk verbazen als dat niet zo was. Deze bekende foto trok onlangs weer mijn aandacht:


Fig.1   Bron: Climate.gov

Het windpark, Horns Rev I, voor de kust bij Denemarken, veroorzaakte op 12 februari 2008
zoveel turbulentie dat de daardoor ontstane bewolking/mist over grote afstand zichtbaar was. Windmolens produceren zogenaamde ‘wakes’, wervelingen, aan de lijzijde van de molens. Normaal zijn die wakes onzichtbaar, maar vanwege bepaalde weersomstandigheden werden ze destijds zichtbaar in de vorm van laaghangende bewolking.

Een zichtbaar voorbeeld van de invloed die windmolens kunnen hebben op het weer dus. NOAA wind researcher Bob Banta is een wetenschapper aan het Earth System Research Laboratory in Boulder, Colorado. Hij keek met collega’s naar de foto en concludeerde dat de lucht bovenwinds (op de voorgrond van de foto) bijna verzadigd moet zijn geweest met waterdamp. Misschien vertraagde en koelde die met vocht verzadigde lucht af op de turbines, waardoor het water condenseerde en er wolken ontstonden. Of misschien, speculeerde Banta, komt het doordat de turbulentie benedenwinds extra koele, vochtige lucht van het oceaanoppervlak trok. Banta: “I cannot tell you exactly what’s going on here, but I can say this is a dramatic, striking example of wind wakes, and this is why the measurements we’re making here in Colorado are so important.” Lees verder

Het Arctisch zonnetje


Fig.1   Bron: NSIDC

In het vorige bericht liet ik aan de hand van de NSIDC data zien dat het oppervlak Arctisch zee-ijs (sea ice extent) sinds 2007 geen daling meer laat zien (fig.1). Dat strookt niet met de vigerende klimaatmodellen. Blijkbaar is aangroei en afsmelten van Arctisch zee-ijs dermate complex dat de stabilisatie van het minimum zee-ijs oppervlak sinds 2007 niet kan worden verklaard met die modellen.

Na nog wat meer gelezen te hebben over dat Arctische ijs kan ik beamen dat de processen op de Noordpool inderdaad extreem complex zijn. Je heb te maken met zeestromen, wind, luchttemperatuur, AMO, AO, NAO, PDO, Arctische Dipool enzovoorts. Er lijkt echter geen twijfel bestaat over de langjarige trend : die is dalend, lees ik overal. Maar modellen die geen raad weten met de situatie vanaf 2007 maar wel met langjarige ontwikkelingen (dalend) vertrouw ik niet. Lees verder

Een ‘gesprek’ met AI over het Arctische zee-ijs


Fig. 1   Data: NSIDC

Onlangs schreef ik over het minimum oppervlak zee-ijs op de Noordpool afgelopen september. In figuur 1 heb ik het verloop van de dagelijkse sea ice extent weergegeven vanaf  januari 1979 t/m september 2024. Vanaf ongeveer 1990 tot 2007 neemt de sea ice extent af, het minimum in september wat sneller dan het maximum in februari/maart. Vanaf 2007 is er sprake van een stabilisatie van zowel het minimum als het maximum. Dat is opvallend omdat dat niet strookt met de modellen die een verdere afname hadden voorspeld.

Ik ben de laatste tijd wat aan het experimenteren met artificial Intelligence,  en heb de kwestie voorgelegd aan Perplexity.ai. Hieronder een verslag van mijn ‘gesprek’ met  AI. Lees verder

Open brief van Bauke Geersing

Eerder verschenen op climategate.nl

Open brief van Bauke Geersing aan de NOS over eenzijdige klimaatberichtgeving


Bauke Geersing.

Beste mevrouw Giselle van Cann,

U bent eindverantwoordelijk voor het functioneren van de NOS-nieuwsorganisatie. Enkele dagen geleden bracht het NOS 20.00 uur Journaal het ‘The 2024 state of the climate report’ groot en liet nog iemand aan het woord die  de teneur van dit rapport bevestigde.

Het NOS-Journaal liet na een deskundige aan het woord te laten die dit, volgens Arnout Jaspers, woke-rapport, becommentarieerde en de echte waarde ervan liet zien.

In onderstaande bijlage treft u de analyse en beschouwing van Arnout Jaspers van/over dit rapport aan.

Het is bekend dat de wereldwijde organisatie EJN journalisten voorziet van klimaatangst propaganda.  U bent daarvoor nu gewaarschuwd. Het is u ook bekend dat er twee duidelijk verschillende perspectieven op de verandering van het klimaat in de wereld zijn: klimaatalarmisten en klimaatrealisten.  Stelselmatig brengt de NOS uitsluitend het alarmistische verhaal. Dat is in strijd met de Mediawet en de Journalistieke Code NPO. Ook dat is Lees verder

Het minimum zee-ijs op de Noordpool in 2024


Fig.1

Lezers weten dat ik rond deze tijd altijd een overzicht geeft van het minimum oppervlak aan zee-ijs op de Noordpool. Samen met de zeespiegelstijging behoort het minimum oppervlak zee-ijs (drijfijs) op de Noordpool tot de heilige graal van klimaatalarmisten. De seizoenschommelingen op de Noordpool zorgen ervoor dat rond maart het maximum oppervlak aan zee-ijs bereikt wordt en rond september het minimum oppervlak. Het kaartje van figuur 1 geeft de situatie weer voor september 2024.


Fig.2   Data: NSIDC

Figuur 2 toont het verloop van de jaarlijkse minimum sea ice extent van 1979 t/m 2024. Die jaarlijkse gegevens zijn op basis van de 2-dagelijkse (tot 20 augustus 1987) en dagelijkse data (van 20 augustus 1987 tot heden) afkomstig van NOAA/NSIDC. Duidelijk is de afname te zien van begin jaren ’80 tot 2007. Vanaf 2007 is er geen sprake meer van een trend. Het kleinste zee-ijs oppervlak werd in 2012 gemeten.

Neerslagrecord een blijvertje


Fig.1   Bron: Telegraaf

Regenrecord blijft maar gebroken worden” schreeuwt de kop in de Telegraaf van vandaag. De krant maakt gebruik van berichtgeving van WeerOnline, dat de periode oktober 2023 t/m september 2024 bekijkt. Nu was het maandenlang erg nat en was mijn keldervloer vanaf december 2023 tot mei 2024 bedekt met een laagje water. Maar ik ben allergisch voor zogenaamde ‘weerrecords’, en ook bij deze ben ik op mijn hoede. Even in de cijfers duiken.


Fig.2   Data: KNMI

Figuur 2 toont voor De Bilt de neerslag per etmaal vanaf 1951. Een dag met meer dan 50mm neerslag noemen we een dag met zware neerslag. We tellen daarvan tot 1970 drie van zulke dagen en de afgelopen 20 jaren vier dagen met zware neerslag. De laatste viel op 10 september 2024. Daar werd in De Bilt 53,3 mm afgetapt. Op neerslagstation Deurne werd op diezelfde dag 2,4 mm gemeten. Een mooi voorbeeld van het feit dat het ‘vangen’ van zware buien deels toeval is. Lees verder

De rol van wolken in de energiebalans TOA

Inleiding

Het is al enkele decennia mogelijk om met behulp van satellieten de energiestraling die de aarde binnenkomt en verlaat nauwkeurig te meten. Dat gebeurt sinds maart 2000 in het CERES programma, ik heb daar al vaker over geschreven.


Fig.1   Bron: CERES

Die CERES data zijn in twee groepen te verdelen: de directe metingen aan de top van de atmosfeer (TOA) en de afgeleide data aan het aardoppervlak. Ik beperk me hier tot de eerste groep, waarvan de data mijns inziens betrouwbaar zijn. Dat betreft het bovenste deel van de energiebalans van figuur 1, de TOA. Dat deel bestaat uit SWin (binnenvallend zonlicht), SWout (uitgaand gereflecteerd zonlicht) en LWout (uitgaand langgolvige straling, warmtestraling).

SWin -SWout is dat deel van SWin dat daadwerkelijk door het aardse systeem wordt geabsorbeerd en wordt ook wel netto SWin genoemd. Het aardse systeem is hier de aarde en het stuk tussen aardoppervlak en TOA, de dampkring. Van de aarde doet in de energiebalans alleen dat deel mee dat daadwerkelijk onderdeel is van die energiebalans, dus de oceaanbekkens (gemiddeld ongeveer 4 km diep) en de continenten (tot een diepte van 1 a 2 meter). Uitwisseling van energie vanuit de diepere aarde wordt geschat op < 0,5 W/m2 en wordt hier gemakshalve genegeerd. Lees verder