Tuvalu alweer kopje onder?


Fig.1    Bron: Volkskrant

Bovenstaand bericht stond op 10 november 2023 in de Volkskrant. Ik herinnerde me onmiddellijk dat ik de afgelopen jaren al enkele malen geschreven had over het vermeende kopje-ondergaan van dit kleine eilandenrijk in de Grote Oceaan. Dat was in 2018, 2020 en 2021. En alle keren bleek het loos alarm. Maar misschien was het deze keer wel raak? Ik ging op onderzoek uit.

Er is al een aantal malen wetenschappelijk onderzoek gedaan naar de situatie op de atollen (koraaleilanden) in het westelijk deel van de Grote Oceaan. In 2010 publiceerden Webb en Kench over dit onderwerp.  Hun conclusie: 86% van de eilanden had nergens last van.
In een artikel in Science van 1 augustus 2014 van Christopher Pala werden recente publicaties bekeken over de stijgende zeespiegel en het ‘naderende einde’ van atollen. Conclusie van de onderzoekers: er is geen enkele aanwijzing dat atollen en andere lage eilanden de zeespiegelstijging niet kunnen bijhouden. De groei van koraalriffen in combinatie met sedimentatieprocessen zorgen er voor dat bewoonde eilanden op hoogte blijven en de zeespiegelstijging makkelijk bij kunnen houden.


Fig.2    Bron: Kench et al

In een recente publicatie van Kench et al (2018) werd onderzoek gedaan naar de invloed van de zeespiegelstijging op de eilanden van Tuvalu tussen 1971 en 2014. Dat gebeurde aan de hand van recente satellietopnames. In de grafiek hierboven is het resultaat te zien voor de 9 bewoonde eilanden van Tuvalu. De aangroei is op 8 van de 9 eilanden groter dan de erosie (afbraak). Bij slechts 1 van de bewoonde eilanden was de erosie groter dan de aangroei. Voor alle 101 Tuvalu eilanden samen was er sprake van een netto aanwas van 2,9%. 74% van alle eilanden toonde een toename van het oppervlak, 27% een afname. Hieronder staan satellietopnames van de veranderingen van de kustlijn vanaf 1971op enkele eilanden.


Fig.3    Atol Funafuti (Tuvalu)  Bron: Wikimedia / Lily-Anne Homasi – DFAT

De onderzoekers verwachten voor de komende decennia weliswaar voortgaande erosie van de kleinste zandeilanden (< 1 ha) die onbewoond zijn, maar een voortzetting van de groei van de meeste van de grotere eilanden en stabiliteit op de platvorm koraalrif-eilanden. Dat zijn de eilanden met het overgrote deel van de bewoning.

Journalist Daan de Vries schrijft in zijn artikel in de Volkskrant dat de eilandengroep “ernstig bedreigd (wordt) door de stijging van de zeespiegel”. Ik ga op zoek naar zeespiegeldata.


Fig.4    Data: PSMSL

PSMSL in Liverpool beheert de meetgegevens van vrijwel alle (1573) getijdestations op aarde. Tuvalu heeft 2 getijdestations, beide gelegen nabij de hoofdstad Vaiaku op de atol Funafuti. Station Funafuti was actief van 1977-2000 en Funafuti B van 1993 tot heden. De maandata overlappen elkaar dus van 1993 tot 2000. Figuur 4 laat zien dat de overlapping van beide reeksen van 1993-2000 bijna perfect is. Dat is niet verwonderlijk want ze liggen op steenworpafstand van elkaar.


Fig.5    Data: PSMSL

In de grafiek van figuur 5 heb ik met behulp van de overlapping van beide reeksen één reeks (Funafuti merged) gemaakt. De streepjeslijn is de lineaire trendlijn met formule rechtsonder. De uitschieters naar beneden zijn het gevolg van sterke El Niño’s, waarbij de luchtdruk aan de tropische westzijde van de Grote Oceaan toeneemt en de zeespiegel daardoor daalt. Vanaf 1977 is de trend van de relatieve zeespiegelstijging ~4 mm/jaar.

Fig.6    Bron: Sonel

Interessant is om te zien of de ondergrond verticaal beweegt. De GPS data van Funafuti zijn vanaf 2002 beschikbaar. De trend van de verticale beweging in de aangegeven periode was -1,43 mm/jaar. Het – teken geeft aan dat er sprake was van een daling van het land. De RSL van Tuvalu (relatieve zeespiegel) in figuur 5 was 4 mm/jaar, dus dat betekent dat de absolute zeespiegelstijging 4 – 1,43 = 2,6 mm/jaar. Vanwege de geringe lengte van de tijdreeks en het feit dat slechts op één plek gemeten wordt is de waarde van deze data beperkt en lijkt deze vooral te wijzen op daling van de ondergrond.

Zoals we hierboven bij de publicatie van Kensch et al al zagen zijn erosie en aangroei van belang om te bepalen of een eiland bij stijgende zeespiegel zijn ‘hoofd’  boven water kan houden. Die aangroei kan tweeledig zijn: de groei als gevolg van groei van het koraalrif en groei als gevolg van sedimentatie op de kust. In de methodiek van Kersch werd geen onderscheid gemaakt tussen koraalgroei en sedimentatie omdat dat onmogelijk is op basis van de gebruikte satellietdata.

Fig.7    Bron: Kensch et al 2018

Figuur 7 is interessant. Vierkante symbolen zijn rifplatform-eilanden, cirkels atolrand-eilanden en lichtblauwe cirkels die symbolen omsluiten duiden de 9 bewoonde eilanden aan. De meeste kleine (onbewoonde) eilanden vertonen geen of weinig oppervlaktetoename. Van de 9 bewoonde eilanden laten er 7 een oppervlaktetoename zien (aangroei > erosie), 1 eiland toe-noch afname (Niulakita) en 1 eiland een afname (Nanumea). Onderstaande tabel laat zien dat Nanumea een populatie heeft van nog geen 300 inwoners.

Fig.8    Bron: Kensch et al 2018

Hench et al concluderen terecht dat de onderzoeksresultaten in tegenspraak zijn met de zienswijze dat de archipel verloren gaat. Slechts 1 eiland neemt in oppervlakte af, 7 eilanden worden groter. Doordat de eilanden dynamische eigenschappen hebben zullen ze de komende eeuw blijven bestaan als woonlocatie voor de Tuvalese bevolking.

Fig.9    Bron: reddit

Tot slot: de minister van Buitenlandse Zaken van Tuvalu hield op 8 november 2021 een toespraak t.b.v. COP26, waarbij hij in de oceaan stond om te laten zien hoe zijn eilandnatie in de Grote Oceaan zich in de “frontlinie van de klimaatverandering” bevindt en kopje onder gaat. De foto rechts laat zien dat zich in de nabijheid een veel hoger Tuvalu-eiland bevindt. Een nat pak was dus niet nodig geweest, maar verhoogt uiteraard wel de dramatiek.

En wat de Volkskrant betreft: keer op keer dezelfde valse klimaatdeuntjes afspelen maakt de boodschap ongeloofwaardig.

Natte oktober trend?

Onlangs schreef ik een artikeltje over de zeer natte oktobermaand van 2023. Mijn conclusie was dat de hoge neerslag op station De Bilt géén voorbode was voor natter wordende oktobers in de nabije toekomst, zoals Peter Siegmund van het KNMI verwacht. Die natte oktobermaand was een ‘outlier’, een uitschieter in de tijdreeks. Ook in het wetenschappelijk rapport dat ten grondslag ligt aan de recente KNMI’23 klimaatscenario’s  geven 3 van de 4 neerslagscenario’s voor 2100 geen toename te zien van de neerslag in de herfst.

Dr. Ir. Hessel Voortman reageerde vervolgens op mijn artikel. Hessel Voortman is deskundig op het gebied van kustverdedigingswerken en zeespiegelstijging en bovendien zeer bedreven in statistische analyses. De software die hij daarbij gebruikt overstijgt zonder twijfel het door mij gebruikte Excel. Op basis van de door mij geleverde KNMI neerslagsommen van de maand oktober vanaf 1906  rolde deze grafiek uit Hessels computer:

Fig.1    Bron: Hessel Voortman

Voortman schrijft:

Ik pas lineaire regressie toe. De verklaarde variantie (R2) is een maat voor hoe goed de regressie-lijn de metingen beschrijft. Je ziet dat  hier de trendlijn een slechte weergave is van de metingen (lage R2). De oorzaak is de enorme ruis (variatie jaar-op-jaar).

 Aan dit soort analyses ligt de aanname ten grondslag dat de afwijkingen van de trendlijn (residuals) een normale verdeling volgen. Hier zie je in het plaatje dat dat niet zo is. De afwijkingen naar boven zijn groter dan de afwijkingen naar beneden. Ik zou dus eigenlijk de kansverdeling van de “residuals” met een andere verdeling moeten beschrijven. Dat is nogal bewerkelijk en daarom laat ik dat nu achterwege.

Hoewel niet aan alle voorwaarden voor toepassing van deze methode is voldaan, kunnen we wel voorzichtig conclusies trekken. Deze oktober was wel degelijk bijzonder nat. De neerslagsom ligt buiten het  99% predictie-interval (de lichtblauwe band). Het predictie-interval geeft aan waar in statistische zin individuele waarnemingen liggen. Het is dus inderdaad een “outlier” zoals jij zelf ook al vond.

 De donkere band geeft de onzekerheid rondom het gemiddelde (met trend). Je kan zien dat we hier met een niet-significante trend te maken hebben. Een horizontale lijn (geen trend) is namelijk één van de mogelijkheden die past binnen de donkerblauwe “toeter”. Dat betekent dat bij dit significantieniveau (1%) het teken van de trend niet eenduidig is (omhoog of omlaag) en daarmee is een trend statistisch niet aangetoond. Dat is statistiek met het timmermansoog.

Iets ingewikkelder is de F-test die de trend in statistische zin vergelijkt met het gemiddelde van de data. De nul-hypothese is dan dat het gemiddelde (zonder trendlijn) een goede beschrijving geeft van de data. Die nul-hypothese wordt in mijn analyse niet verworpenen derhalve is de trend niet significant. En als gezegd niet geheel correct omdat de “residuals” niet normaal verdeeld zijn.

 Maar een houdbare conclusie lijkt:

      • Was 2023 nat? Jazeker!
      • Het natste sinds start metingen in 1906? Onder voorwaarde dat de meetmethode en meetlocatie niet teveel zijn veranderd; ja!.
      • Is er een verandering/trend gaande? In statistische termen; nee.

Dat is klare taal en in lijn met wat ikzelf met míjn timmermansoog  en behulp van Excel dacht te zien.

Gelijk hebben ≠ gelijk krijgen

We weten het allemaal: als je gelijk hebt betekent dat nog niet dat je gelijk kríjgt. Dat geldt met name voor politiek-maatschappelijk gevoelige kwesties of als er instituten met naam bij betrokken zijn. Dat is ook het geval bij de kwestie van de verdwenen hittegolven in De Bilt. Wat er gebeurde:

Op 1 januari  2016 werden de gemeten maximum dagtemperaturen (Tx) van 1 januari 1901 tot 1 september 1951 door het KNMI ‘gecorrigeerd’ (gehomogeniseerd). Daarmee verminderde het KNMI het aantal hittegolven in die halve eeuw van 23 naar maar liefst 7, een absurde actie. EW-journalist Simon Rozendaal schreef daar als eerste over en dat werd opgepikt door Frans Dijkstra, gepensioneerd chemicus en klimaatonderzoeker. Die schreef op zijn beurt in 2017 over de kwestie een artikel in “Meteorologica”, het vakblad van menig KNMI-er. Dat ging overigens niet zonder slag of stoot: er kwamen 5 peer reviewers aan te pas, meer dan bij de meeste artikelen in Nature.

Een half jaar later werd er door Theo Brandsma van het KNMI (verantwoordelijk voor die homogenisatie) op de bijdrage van Dijkstra gereageerd in Meteorologica: het KNMI zette de hakken in het zand. Voor Frans Dijkstra het sein om samen met Jan Ruis, Marcel Crok en ondergetekende een rapport over de kwestie te schrijven, dat in 2019 verscheen (tweede versie). Dat Nederlandstalige rapport geeft een overzicht van wat er allemaal mis ging bij de homogenisatie van De Bilt. Het KNMI wilde daarover niet met ons communiceren.

Ondanks een uitnodigend persbericht werd het rapport door de alle traditionele media genegeerd. De Telegraaf was het enige  medium dat belangstelling toonde. Het artikel in die krant was al geschreven, maar op het laatste moment trok de toenmalige hoofdredacteur, Paul Jansen, het artikel terug. Zijn motivatie daarvoor is hier terug te lezen. Een onzinnige argumentatie, maar zo lopen dingen soms als je kritisch bent.

Voor ons was dat het sein om te gaan werken aan een ‘echte’ wetenschappelijke publicatie, die -na wat geduld oefenen- in 2021 verscheen in het tijdschrift Theoretical and Applied Climatology. Daarin lieten we zien dat de homogenisatie van het KNMI gewoon niet deugde. Weer volgde een oorverdovende stilte bij de traditionele media. Alleen een journalist van De Andere Krant ging verhaal halen bij de directie van het KNMI. De directie vond onze paper ‘interessant’ en men zegde toe in 2023 met een herziening van de homogenisatie te komen.

In juni 2023 verscheen echter in Meteorologica een artikel van KNMI-onderzoeker Theo Brandsma over trends in temperatuurextremen, waaruit valt af te leiden dat het KNMI niet van plan is de homogenisatie van 2016 fundamenteel te herzien. Hoofdauteur van onze publicatie uit 2021, Frans Dijkstra, heeft op het recente artikel van Brandsma gereageerd. Die reactie is deze keer niet aangeboden aan de redactie van Meteorologica, die al eerder blijk heeft gegeven niet zo geïnteresseerd te zijn in al te kritische geluiden.

De reactie van Frans Dijkstra kunt u hier als pdf downloaden

Waterstof

Het vervangen van fossiele brandstoffen door waterstof lijkt een ideale oplossing om transport milieuvriendelijker te maken en om een back-up te bieden voor ‘schommelende’ energiebronnen zoals zonne- en windenergie. Maar hoe milieuvriendelijk is waterstof eigenlijk? En hoe duurzaam is het, gezien het feit dat waterstofcellen afhankelijk zijn van de levering van zeldzame metalen zoals platina en iridium? En voor diegenen die een een mooi ’tweede leven’ voor het Nederlandse gasnet  voor ogen hebben: waterstofatomen zijn zo klein dat voor waterstof ons aardgasnet zo lek is als een mandje. Zelfs speciaal RVS voor laboratoriumdoeleinden heeft moeite om de waterstofatomen binnen te houden.

Fysicus Sabine Hossenfelder heeft alle relevante cijfers verzameld. Conclusie: waterstof gaat ons niet redden.

Natte oktober


Fig.1    Data: KNMI

De natste oktober in De Bilt sinds 1906” kopt een bericht op de website van het KNMI. Ik heb het even nagezocht met de neerslagsommen per etmaal, en figuur 1 is duidelijk: oktober 2023 was inderdaad de natste vanaf 1906. Gelukkig noemt het KNMI het beginjaar van de meetreeks, en niet “de natste ooit” zoals de NOS site doet (en veel kranten), waarschijnlijk om de dramatiek te verhogen. De NOS laat KNMI-wetenschapper Peter Siegmund aan het woord:

Dit is echt heel uitzonderlijk”, zegt klimaatexpert Peter Siegmund van het KNMI. Hij verwacht dat er in november ongeveer 110 millimeter regen zal vallen. Gemiddeld valt er in deze maand zo’n 80 millimeter. “Ik verwacht dat we dit de komende decennia vaker gaan meemaken: meer regen in het najaar dan we gewend zijn.”

Of dat laatste op te maken is uit de grafiek van figuur 1 waag ik te betwijfelen. In oktober 2023 viel er in De Bilt 219,5 mm, maar de een na natste oktober was die van 1932 met 193,4 mm. Daar zit weinig neerslagspeling tussen, terwijl beide records maar liefst 92 jaar uiteen liggen. De streepjeslijn in figuur 1 is de lineaire trendlijn met formule rechtsboven die laat zien dat de neerslag van 1906 t/m 2023 met 22 mm is toegenomen.


Fig.2    Data: KNMI

Maar als we oktober 2023 niet mee laten doen ziet de grafiek er vrijwel hetzelfde uit (figuur 2). De lineaire trendlijn echter laat zien dat door oktober 2023 de neerslag van 1906 t/m 2022 in plaats van 22 mm met nog geen 15 mm is toegenomen. Die ene punt van oktober 2023 verandert veel aan een trend over meer dan 100 jaar.


Fig.3    Data: KNMI

De vraag is of de hoge neerslag van oktober 2023 een toevalstreffer is (outlier) of het begin van een toenemende trend. De loesslijn (voortschrijdende regressie, α = 0,33) in figuur 3 doet dat laatste vermoeden. Maar kijk nu eens wat er gebeurt met de loesslijn als we de grafiek t/m 2022 laten lopen in plaats van t/m 2023:


Fig.4    Data: KNMI

Van een opwaartse trend in de laatste decennia nu is geen sprake, de laatste jaren is er zelfs een lichte daling te zien. Het lijkt er op dat oktober 2023 een uitschieter is in een reeks die vanaf 1930 nauwelijks een trend vertoont.

Over de oorzaken van die  natte oktober 2023 zegt Siegmund:

De wind komt uit het westen en regen is dan een logisch gevolg. Daarnaast is de Atlantische Oceaan warmer dan normaal, waardoor meer regenwolken ontstaan. “Dat komt door klimaatverandering, maar ook door toevallige variaties in de stromingen en temperatuur van de oceaan en de atmosfeer.”

Het is fysisch wel verklaarbaar dat warmer oppervlaktewater meer bewolking veroorzaakt, maar betekent dat ook meer oktoberneerslag in De Bilt? Om daar enig zicht op te krijgen heb ik de neerslagdata van oktober 1906 t/m 2023 vergeleken met de data van de ‘skin temperature’ van het noordelijk deel van de Atlantische Oceaan. Daarvoor gebruikte ik de temperatuur anomalie-gegevens van de reanalyses NOAA/CIRES/DOE 20th Century Reanalysis V3, die begint in 1836 en doorloopt t/m 2015. Het deel van de Atlantische Oceaan dat ik bekijk is dezelfde als die ten grondslag ligt aan de AMO index op basis van HadSST, namelijk 25-60N en 7-75W.


Fig.5    Data: KNMI en ClimateExplorer

De neerslaggrafiek loopt iets verder door dan die van de temperatuur anomalie van de oceaan, we moeten het doen met 110 jaar vergelijken. De trend van de neerslagdata volgt de watertemperatuur niet goed. De grafiek van de watertemperatuur wordt waarschijnlijk sterk beïnvloed door de AMO, Atlantische Multidecadale Oscillatie.

Interessant is om te bezien of de variantie (verschillen van jaar tot jaar) van de watertemperatuur correleert met die van de oktoberneerslag. De correlatiecoëfficiënt is R2 = 0,0016, wat betekent dat de invloed van de watertemperatuur in de maand oktober op de variantie in de neerslag afwezig is. Blijkbaar betekent relatief warm oceaanwater nog niet dat meer neerslag in oktober vanzelfsprekend is.

Dat neerslag sterk beïnvloed wordt  ” door toevallige variaties in de stromingen en temperatuur van de oceaan en de atmosfeer.” staat vast. In hoeverre echter het warmere oceaanwater het gevolg is van ‘klimaatverandering’ is nog maar de vraag. ‘Klimaatverandering’ is een containerbegrip, en warmer water kan gevolg maar ook oorzaak zijn van klimaatverandering. Kip of ei, of allebei? In het temperatuursignaal is duidelijk de invloed van het AMO signaal waar te nemen die een cyclus van ongeveer 60 jaar heeft.


Fig.6    Bron: KNMI

De neerslagdata die ik heb gebruikt zijn afkomstig van het station De Bilt. Het kaartje van figuur 6 laat zien dat De Bilt en directe omgeving in oktober 2023  een van de natste plekjes van Nederland was. Een ‘nat’  verhaal op basis van de data van Maastricht zou onmogelijk zijn geweest.

Ik vroeg me af of Siegmunds verwachting dat we rekening moeten houden met ‘meer regen in het najaar dan we gewend zijn’ hout snijdt. Wat zegt het rapport ‘KNMI’23 klimaatscenario’s over de neerlag in oktober in de nabije toekomst? Helaas spreekt het rapport alleen maar over de zomer en de winter. Daarom ben ik in het wetenschappelijk rapport gedoken dat ten grondslag ligt aan het scenariorapport, “KNMI National Climate Scenarios 2023 for the Netherlands”.

Dat levert geen oktoberdata maar wel toekomstplaatjes voor de herfst:


Fig.7    Bron: KNMI

Voor 2050 laten alle 4 scenario’s een neerslag zien die vergelijkbaar is met die van de laatste klimaatperiode 1991-2020, dus geen toe- of afname. Voor 2100 is er slechts 1 scenario waarbij de neerslag toeneemt. Het kan dus alleszins wel meevallen met die toekomstige neerslagtoename in oktober en de andere herfstmaanden. Oktober 2023 is mijns inziens voorlopig een outlier, totdat het tegendeel bewezen is.

Van Wijngaarden & Happer

Het aardse klimaat (van het aardoppervlak tot topje van de atmosfeer) hangt voor een groot deel af van stralingsprocessen in de atmosfeer. Kortgolvige straling van de zon komt van buitenaf de atmosfeer binnen en verwarmt het aardoppervlak. Het aardoppervlak absorbeert een deel van die kortgolvige straling en zendt op zijn beurt energie in de vorm van langgolvige straling (IR) uit, waar het buiten de atmosfeer in de ruimte ‘verdwijnt’. Die langgolvige straling koelt zo  aardkorst en atmosfeer af. Die binnenkomende en uitgaande straling is min of meer in balans.

Broeikasgassen en wolken ‘vertragen’ de uitgaande stroming van langgolvige straling op hun weg naar de ruimte en zorgen er zo voor dat de temperatuur in de atmosfeer herverdeeld wordt: aan het aardoppervlak hoger en op grotere hoogte in de atmosfeer  lager. Die hogere temperaturen aan het aardoppervlak (broeikaseffect) zorgen er voor dat de aarde voldoende warm is om leefbaar te zijn. De gemiddelde temperatuur aan het aardoppervlak is  ongeveer15 °C, zolder broeikaseffect zou dat -18 °C zijn. Zie voor een meer gedetailleerde uitleg van het broeikaseffect het hoofdstuk https://klimaatgek.nl/wordpress/broeikastheorie/ .

Anders dan veel media ons willen doen geloven spelen waterdamp en wolken een veel grotere rol in het broeikaseffect dan CO2. Het is echter een slechte gewoonte om onze aandacht uitsluitend te richten op CO2. Daardoor ontstaat er een soort blindheid voor andere factoren die tot een tunnelvisie kan leiden. In de media is ‘CO2’  een synoniem voor ‘klimaatveranderingen’, terwijl de relatie tussen CO2 en de temperatuur en andere klimaatfactoren zeer complex is. Een illustratie daarvan is het feit dat wetenschappers het al jaren met elkaar oneens zijn wat het effect is van verdubbeling van CO2 op de aardse temperatuur (klimaatgevoeligheid). Die schattingen lopen uiteen van 1,5 graad tot meer dan 6 graden. Overigens toont dat gebruik van ‘verdubbeling’ aan dat het effect van CO2 op de temperatuur alsmaar afneemt met de toename van het atmosferisch CO2  gehalte, dat is een fysisch feit (gelukkig).

De afgelopen paar jaren hebben de fysici Van Wijngaarden en Happer enkele papers gepubliceerd die een nieuw licht werpen op de rol van CO2 en andere broeikasgassen in het broeikaseffect. In hun paper uit 2019 (gereviseerd in 2022), “Infrared Forcing by Greenhouse Gases”, analyseerde het duo stralingsoverdracht in de atmosfeer onder wolkenloze omstandigheden van de  broeikasgassen H2O, CO2, O3, N2O en CH4. Dat gebeurde op basis van de HITRAN database. Die database wordt gebruikt om de transmissie en emissie van straling in de atmosfeer lijn voor lijn te voorspellen en te simuleren.

Fig.1    Van Wijngaarden et al., 2023

Figuur 1 is afkomstig van een jonger artikel uit 2023,  “Atmosphere and Greenhouse Gas Primer”. De gladde blauwe lijn is de spectrale flux van het aardoppervlak op gematigde breedte bij temperatuur van 288,7 K (15,5 °C) voor een transparante atmosfeer zonder broeikaseffect. De groene lijn is de flux als alle CO2 zou worden verwijderd, maar met alle andere broeikasgassen in hun standaardconcentraties. De zwarte lijn is voor alle broeikasgassen met hun standaardconcentraties. De rode lijn is voor tweemaal de standaardconcentratie van CO2 maar met alle andere broeikasgassen bij hun standaardconcentraties.

Verdubbeling van de standaard concentratie van CO2 van 400 naar 800 ppm (van zwart naar rood) verlaagt het oppervlak beneden de zwarte lijn met 1%. Van Wijngaarden en Happer schatten dat dat een stijging van ongeveer 1 °C aan het aardoppervlak zal veroorzaken. De grafiek laat ook fraai zien dat het eerste toenametraject (van CO2 van 0 ppm tot 400 ppm, van blauw naar zwart) een veel grote invloed heeft gehad dan de tweede toename van 400 ppm naar 800 ppm  (van zwart naar rood) zal hebben.

Van Wijngaarden en Happer tot slot:

 “Een toename van kooldioxide zal een kleine extra opwarming van het oppervlak veroorzaken. Het is moeilijk om het precies te berekenen, maar onze beste schatting is dat het ongeveer 1 °C is voor elke verdubbeling van de CO2 -concentratie, als alle terugkoppelingen correct worden meegerekend. Alarmerende voorspellingen van gevaarlijke opwarming vereisen grote positieve terugkoppelingen. De meest genoemde terugkoppeling is een toename van de concentratie waterdamp in de bovenste troposfeer. Maar de meeste klimaatmodellen hebben veel meer opwarming voorspeld dan is waargenomen, dus er is geen observationele ondersteuning voor sterke positieve terugkoppelingen. De meeste terugkoppelingen in de natuur zijn negatief, zoals wordt aangegeven in het principe van Le Chatelier: “Wanneer een systeem in evenwicht gedurende lange tijd wordt onderworpen aan een verandering in concentratie, temperatuur, volume of druk, verandert het systeem in een nieuw evenwicht en deze verandering werkt de toegepaste verandering gedeeltelijk tegen….
Broeikasgassen vormen de warmtewisselaar die er voor zorgt dat de atmosferische
‘heat’ engine overtollige warmte kan lozen in de koude ruimte.”

 Ingewikkelde kost, die wat begrijpelijker wordt als we dat Happer laten uitleggen. Dat deed hij een jaar geleden op uitnodiging van Clintel. Prachtig optreden:

 

Zonne- en windenergie doodlopende weg

Energiedeskundige prof. David Smeulders van TUe heeft onlangs een interessante berekening “ter verspreiding” rondgestuurd.  Het gaat over de vraag of we in Nederland wel over voldoende wind- en zonnecapaciteit beschikken om aan de huidige elektriciteitsvraag te kunnen voldoen. Let wel: de huidige vraag. Dus niet die veel grotere vraag naar elektriciteit die voor de komende jaren geprojecteerd staat.

Smeulders: “Pieter Omtzigt beweerde in meerdere debatten dat we 3000 uur per jaar onvoldoende zonne- en windenergie hebben. Kunnen we dit zelf uitrekenen?” Smeulders kan dat wel, en de uitkomst is dat het tekort aan zonne- en windenergie dat Omtzigt schetst nog aan de lage kant is.

Smeulders: “Vervangen van 25 GW opgesteld conventioneel vermogen door 50 GW groen vermogen (verdeeld over 50% zon en 50% wind) levert niet genoeg elektriciteit gedurende 3680 uren in het jaar om de huidige vraag af te dekken. De verwachting is bovendien dat de stroomvraag nog aanzienlijk gaat toenemen dus dat de tekorten gaan toenemen. Ook wordt er in dit scenario 10% teveel stroom geproduceerd waarvoor een bestemming moet worden gevonden.”

Doodlopende weg dus.

 

KNMI’23 en de zeespiegel

Fig.1    Bron: KNMI’23

In het recent verschenen rapport ‘KNMI23 Klimaatscenario’s’ is ook een paragraafje gewijd aan de zeespiegel voor de Nederlandse kust. Figuur 1 levert een inkijkje in wat we volgens het KNMI kunnen verwachten tot het jaar 2100.

Zoals ik in een vorig artikel al liet zien gaat het KNMI in haar jongste rapport uit van een laag en een hoog scenario, gebaseerd op een tweetal IPCC klimaatscenario’s, SSP’s, die elk gebouwd zijn op verschillende te verwachten uitstoot van broeikasgassen. Het KNMI heeft er voor gekozen om voor de Nederlandse klimaatscenario’s de hoogste (SSP5-8.5) en de laagste (SSP1-1.9) te gebruiken. Daar is in brede kring veel kritiek op gekomen, omdat wordt aangenomen dat het hoogste scenario onrealistisch is.

Fig.2    Bron: KNMI scientific report

Volgens de gehanteerde scenario’s kunnen we bij het laagste scenario een zeespiegelstijging in 2100 verwachten van 28 tot 72 cm, en voor het hoogste 58 tot 123 cm. Dat alles vergeleken met de referentieperiode 1995-2014. Figuur 2 komt uit het wetenschappelijk rapport waarop het KNMI23 Klimaatscenario’s rapport is gebaseerd. Opvallend is dat in deze oorspronkelijke grafiek ook het gemiddelde scenario SSP2-2.45 is meegenomen, dat in het definitieve rapport ontbreekt. Wetenschapsjournalist Kleis Jager vroeg daarover door bij het KNMI. Van Dorland antwoordde:

Fig.3    Bron: Telegraaf

Het is interessant om de huidige KNMI grafiek van de gedachte zeespiegelontwikkeling tot 2100 te vergelijken met die van het vorige klimaatscenario-rapport uit 2013:


Fig.4    Bron KNMI

Opvallend is dat het hoogste scenario in dat KNMI’14 rapport een stuk lager uitvalt dat dat in het recente rapport, namelijk maximaal 100 cm verhoging in plaats van het maximum van 123 cm bij het hoogste scenario uit het KNMI’23 rapport.

Fig.5    Bron: Deltares

Figuur 5 is de weergave van de KNMI’14 grafiek in de Zeespiegelmonitor 2018 van Deltares. Omdat deze grafiek veel gedetailleerder is dan die van het KNMI (figuur 4) is meteen te zien dat de scenario’s al vanaf begin jaren ’90 uit de pas lopen met de gemeten ontwikkeling van de zeespiegelhoogte. Om dat nu te voorkomen heeft men het anders aangepakt en in plaats van de oppervlaktetemperatuur als driver te gebruiker heeft men nu de CO2-emissies gebruikt. Of dat de scenario’s betrouwbaarder maakt kan ik niet overzien, wel valt op dat de jongste grafiek (figuur 1) nog steeds geen gedetailleerde weergave levert.

In figuur 1 wordt het bovendien allemaal nóg angstaanjagender door het toevoegen van “drie schattingen voor de hoogst mogelijke zeespiegelstijging”. Waar komen die data vandaan? Het gebruikersrapport geeft daarop geen antwoord, dus ik dook weer in het wetenschappelijke rapport. Daar vond ik de volgende uitleg:

“Despite including the latest knowledge from observations and state-of-the-art climate, glaciers and ice sheet models, the standard sea-level scenarios rely on assumptions that might not be appropriate for users who are risk averse or who would like to consider a broader range of possible futures. Some physical mechanisms that are not yet  included in standard models could accelerate the speed of sea level rise.”

Het argument is, begrijp ik, dat we nog niet alles weten van de stabiliteit van de ijskappen op Antarctica en Groenland. Dat de kennis over wat de landijsmassa’s in de nabije toekomst gaan doen nog in de kinderschoenen staat is bekend. We meten immers nog maar relatief kort aan die ijskappen en de hoeveelheid aan data is zeer beperkt. Dus hoe serieus zijn die “drie schattingen voor de hoogst mogelijke zeespiegelstijging” in de grafiek van figuur 1? Het wetenschappelijke rapport geeft daar gelukkig wel een aanwijzing voor. De uitleg over die drie schattingen staat onder de kop “Low-likelihood high impact scenarios”.

Fig.6    Bron: KNMI’23

Het belangrijkste stukje tekst uit de zeespiegelparagraaf van het KNMI’23 rapport staat misschien wel in figuur 6. Niet zozeer in de eerste regels, hoewel ‘Nieuw Amsterdams Peil’ voor NAP (=Normaal Amsterdams Peil) een fout is die in een KNMI rapport niet thuis hoort. En ook niet die ruim 1,9 mm/jaar stijging waarbij rekening gehouden is met de bodemdaling (daarover later meer). Maar wel in het door mij rood omkaderde deel.

Het KNMI gaat uit van een versnelling in de zeespiegelstijging vanaf 1993, waardoor de trend volgens het KNMI van 1890-1993 1,8 mm/jaar was en van 1993-2021 2,9 mm/jaar. Die trendbreuk rond 1993 is niet te zien in de zeespiegelgrafieken van de hoofdstations van ons land:


Fig.7    Data: PSMSL

De grafiek van figuur 7 toont het verloop van de gemiddelde zeespiegelhoogte van de 6 hoofdgetijdestations Delfzijl, Harlingen, Den Helder, IJmuiden, Hoek van Holland en Vlissingen, van 1890 t/m 2022. De blauwe lijn is de lineaire trendlijn, die een trend heeft van 1,8 mm/jaar (=18 cm per eeuw). Het betreft de relatieve zeespiegel, de zeespiegelhoogte ten opzichte van het land. Omdat de gemiddelde bodemdaling langs onze kust ongeveer 4,5 cm per eeuw bedraagt is de absolute zeespiegelstijging langs de Nederlandse kust van 1890-2022 nog geen 14 cm per eeuw.

Van een trendbreuk rond 1993 is op het oog geen sprake. Hoe komt het KNMI daar dan bij? Ik vind in de tekst van figuur 6 het antwoord:   “Veranderingen van de regionale zeespiegel worden ook beïnvloed door natuurlijke variaties in windsnelheid en -richting, die de mate van opstuwing voor de kust bepalen. Als we hiervoor corrigeren, is een versnelling zichtbaar”. Dus als je de invloed van de wind op de zeespiegelhoogte verwijdert is er een trendbreuk zichtbaar! Dat lijkt erg op dit grappige grafiekje dat Nobelprijswinnaar Paul Krugman onlangs op Twitter plaatste:


Fig. 8    Bron: Twitter

De door het KNMI gehanteerde methodiek is afkomstig van enkele recente publicaties, de eerste van Steffelbauer et al (2022) rond een groep Delftse onderzoekers, en een vrijwel identieke methodiek in het laatste Deltares-rapport (2022).

Fig. 9    Bron: Deltares

En kijk eens in figuur 9 naar het resultaat als je de windinvloed verwijdert: er is een trendbreuk tevoorschijn gekomen. Over de methodiek van dat wegstrepen van factoren is al vaker uitgebreid geschreven. Die artikelen over de paper van Steffelbauer vindt u hier.

Kort samengevat zijn er enkele bezwaren tegen de gebruikte methodiek. De belangrijkste is wel dat bij het vaststellen van een trend men het niet meer heeft over de trend van de gemeten data maar over de trend van de uitkomsten van een model. Het tweede bezwaar is dat er vanuit het veld forse inhoudelijke kritiek is gekomen over de gehanteerde methodiek over de windopzet. Zie hier.


Fig.10    Data: PSMSL

Figuur 7 liet zien hoe de ontwikkeling van de relatieve zeespiegel op basis van de waarnemingen er uitziet.  In figuur 10 is dezelfde grafiek weergegeven als in figuur 7, met daaraan toegevoegd een loess smoothing over 10 jaren. Die loess smoothing ‘volgt’ de golfbeweging in de puntenwolk, in tegenstelling tot de lineaire trendlijn. Die golfbeweging in het signaal is het gevolg van veranderingen in onder andere atmosferische omstandigheden van jaar tot jaar, maar ook de nodale cyclus van 18,6 jaar oefent invloed uit. De loesslijn duikt de ene keer onder de lineaire trendlijn en komt er daarna weer bovenuit. Van een stijgende trend is vooralsnog niets te zien.


Fig.11    Data: PSMSL

De grafiek in figuur 11 toont tot slot behalve de lineaire trendlijn ook de polynomiale trendlijn van 2e orde. Die lijn geeft de versnelling van de reeks weer. Te zien is dat de polynomiale trendlijn vrijwel samenvalt met de lineaire trendlijn. Dat wijst op het nagenoeg ontbreken van een versnelling in de zeespiegelstijging langs de Nederlandse kust.

Deltares schreef in 2019 als conclusie van de Zeespiegelmonitor 2018:  “Dit rapport beschrijft een nieuwe versie en actualisatie van de huidige zeespiegelstijging ten behoeve het suppletieprogramma. Deze methode laat zien dat de zeespiegel, over de periode 1890 tot en met 2017, met een snelheid van 18.6cm/eeuw is gestegen tot 6cm boven NAP. Er is er geen sprake van een versnelde zeespiegel langs de Nederlandse kust. Een deel (4.5cm/eeuw) van de gemeten zeespiegelstijging langs de kust komt door bodemdaling. ”

Mij dunkt dat dat in 2023 nog steeds het geval is. En dan te bedenken dat ik in de grafieken nog geeneens gecorrigeerd heb voor de te hoge zeespiegeldata op station Delfzijl die het gevolg zijn van de sterke bodemdaling door gaswinning.

KNMI-rapport ongeloofwaardig

Enkele dagen geleden schreef ik een eerste reactie op het uitgebrachte rapport KNMI’23 Klimaatscenario’s. Daarin richtte ik mij met name op het feit dat die klimaatscenario’s geen voorspellingen zijn maar ‘vergezichten’  op basis van klimaatmodellen. Die modellen zijn op zich zeer hoogwaardige bouwsels, maar als ze aantoonbaar niet doen waar ze voor gebouwd zijn, zijn ze nutteloos.

Fig. 1    Bron: KNMI

De tabel van figuur 1 laat de uitkomsten zien van de computerruns met die modellen voor de jaren 2050 en 2100. Dat doen ze op basis van een tweetal IPCC klimaatscenario’s, SSP’s, die elk gebouwd zijn op verschillende te verwachten uitstoot van broeikasgassen.  En dat is weer afhankelijk van onder andere economische en technologische ontwikkeling de komende jaren.

Fig.2    Bron grafiek: Clintel

Die 5 IPCC-scenario’s staan met de bijbehorende opwarming afgebeeld in figuur 2. SSP1-1.9 is het scenario met de laagste opwarming (1,4 °C), SSP5-8.5 met de hoogste (4,8 °C). Het KNMI heeft er voor gekozen om voor de Nederlandse klimaatscenario’s de hoogste en de laagste te gebruiken. Dat zijn de L en H in de tabel van figuur 1. Beide hebben een droge (d) en een natte (n) variant.

Op het eerste gezicht lijkt dat redelijk: je geeft aan tussen welke grenzen zich de klimaatveranderingen tot 2050 en 2100 zich waarschijnlijk zullen afspelen. Maar het is echter elemaal niet redelijk, omdat de hoogste variant, SSP5-8.5, door het wetenschappelijke veld is afgeserveerd als aantoonbaar veel te hoog. Marcel Crok geeft in een artikel links naar diverse wetenschappelijke publicaties waarin dat wordt aangetoond. Hij rekende uit dat om het scenario SSP5-8.5 werkelijkheid te laten worden we tot 2100 33.000 kolencentrales zullen moeten bouwen. Volstrekt onhaalbaar en onzin. Dat betekent dat de helft van de berekende data in de tabel van de figuur 1 in de prullenbak kan. Blijft dan over de gegevens die berekend zijn op basis van SSP1-1.9, een scenario dat waarschijnlijk te licht is.

Roger Pielke Jr. is een bekende Amerikaanse klimaatwetenschapper en heeft met verbazing gekeken naar de weg die het KNMI gevolgd heeft. Hij schreef op zijn blog een vernietigend commentaar met de kop ‘Thou Shalt Use RCP8.5’, waarvan de vertaling hier te lezen is.

Pielke schrijft:

De ‘nieuwe’ Nederlandse klimaatscenario’s zijn niet uniek. De regeringen van de Verenigde Staten, het Verenigd KoninrijkNieuw-Zeeland, de Europese Unie en zeker vele andere, hebben formeel het gebruik van extreme, niet-plausibele klimaatscenario’s, dus RCP8.5 of SSP5-8.5, in beleidsvorming en regelgeving, aanbevolen of verplicht gesteld.

Ik zal er niet omheen draaien. In 2023 is het geven van officiële overheidsstatus aan klimaatscenario RCP8.5 wetenschappelijk en beleidsmatig wangedrag. Hierdoor zitten we de rest van het decennium vast aan het gebruik van een niet-plausibel klimaatscenario, zelfs terwijl klimaatexperts beter weten.”.

En in de Engelse versie is een opmerkelijke update opgenomen:

KNMI in De Telegraaf says that they do not want to make the more plausible SSP2-4.5 available to the public out of concerns that the public will see it as more plausible: “We don’t want people to take the intermediate scenario as a prediction from the KNMI”. That is incredible.”

Het laatste woord is over dit nieuwe rapport nog niet geschreven.

Nieuwe KNMI klimaatscenario’s


Fig.1    Bron: KNMI

”  De nieuwe nationale klimaatscenario’s laten zien wat Nederland en Caribisch Nederland de komende decennia te wachten staat aan klimaatverandering. Het klimaat verandert zelfs in de meest optimistische scenario’s nog een flinke tijd door, met grote gevolgen voor Nederland. Het wordt in alle seizoenen warmer, met meer tropische dagen en minder vorstdagen. De winter wordt natter, de zomer wordt droger en er ontstaan zwaardere buien. De zeespiegel blijft stijgen.

We zien nu al de gevolgen van klimaatverandering, wereldwijd en ook in Nederland, met grote gevolgen voor mens en natuur. In de nieuwe KNMI’23-klimaatscenario’s laat het KNMI zien dat het voor de verdere klimaatverandering sterk uitmaakt hoeveel broeikasgassen we nog gaan uitstoten. Hoe hoger de uitstoot, hoe sterker de opwarming en hoe extremer het weer. Bovendien neemt met elke ton uitstoot de kans op onvoorspelbare gevolgen toe.”

Zo begint het persbericht van eind vorige week over de jongste versie van de KNMI Klimaatscenario’s. Dat zijn vergezichten (tot voorbij 2100) over de ontwikkelingen van het klimaat in Nederland. Die inleidende zinnen laten er zo te lezen geen twijfel over bestaan: het wordt allemaal erger, en ‘We zien nu al de gevolgen van klimaatverandering… en ook in Nederland, met grote gevolgen voor mens en natuur’. Dat laatste is volstrekte onzin. Maar je moet natuurlijk het rapport ‘pakkend’ maken, want het NOS-journaal en de vele praattafels moeten vanavond die vergezichten van het KNMI breed kunnen uitmeten.

Fig.2    Bron: Scafetta (2022)

Wat men niet uit het oog moet verliezen -ondanks de zekere toon van het persbericht-  is dat die KNMI scenario’s vergezichten zijn en geen voorspellingen. Die vergezichten zijn gebaseerd op de uitkomsten van 33 klimaatmodellen. En die modellen bakken er tot op heden weinig van, ze kunnen niet goed voorspellen.

Kijk maar eens naar de resultaten van een recente publicatie van Scafetta in figuur 2. Het toont het verloop van de gemiddelde aardse temperatuur vanaf 1980 t/m 2021 volgens de satellietdata van UAH v6 (zwarte lijn). De gele band omvat de uitkomsten van in totaal 38 modellen. Die 38 klimaatmodellen van de jongste generatie (CMIP6) zijn verdeeld in drie groepen op basis van hun klimaatgevoeligheid. Klimaatgevoeligheid is de mate waarin het model ‘voorspelt’ dat de temperatuur zal stijgen bij verdubbeling van het CO2 gehalte. Zelfs bij de modellen die een lage opwarming voorspellen, ‘Low-ECS GMCs’ (1.5<ECS≤3.0 °C), duikt de waargenomen temperatuur onder de door die 13 modellen voorspelde temperatuur. Dat divergeren is nog sterker bij de 11 modellen met gemiddelde ECS (3.0<ECS≤4.5 °C) en het sterkst bij de 14 modellen met een hoge ECS (4.5<ECS≤6.0 °C).

In de korte video hierboven legt prof. Happer in enkele minuten uit waarom klimaatmodellen zo’n moeite hebben met het extreem complexe aardse klimaat. Het filmpje is uit 2018, toen de vorige generatie klimaatmodellen CMIP5 actief was. Bedenk dat die CMIP5 modellen het minder slecht deden dan de huidige CMIP6 modellen.

De laatste alinea van het KNMI persbericht: “In deze KNMI’23-klimaatscenario’s hebben wij alle nieuwe kennis over klimaatverandering uit het meest recente IPCC-rapport vertaald naar de Nederlandse situatie. In totaal heeft de supercomputer zo’n 2 jaar 2.000 terabyte aan klimaatmodellen doorgerekend.” Dat laatste klinkt stoer, maar het haalt weinig uit als je modellen niet deugen. Op je hoede zijn dus met dat nieuwe rapport.

Later meer over de details van dit rapport.